Abstract
AbstractPerennial crops replacing annual crops are drawing global attention because they harbor potential for sustainable biomass production and climate change mitigation through soil carbon sequestration. At present, it remains unclear how long perennial crops can sequester carbon in the soil and how soil carbon stock dynamics are influenced by climate, soil, and plant properties across the globe. This study presents a meta-analysis synthesizing 51 publications (351 observations at 77 sites) distributed over different pedo-climatic conditions to scrutinize the effect of perennialization on organic carbon accumulation in soil compared with two annual benchmark systems (i.e., monoculture and crop rotation). Results showed that perennial crops significantly increased soil organic carbon stock by 16.6% and 23.1% at 0–30 cm depth compared with monoculture and crop rotation, respectively. Shortly after establishment (< 5 years), perennial crops revealed a negative impact on soil organic carbon stock; however, long duration (> 10 years) of perennialization had a significant positive effect on soil organic carbon stock by 30% and 36.4% at 0–30 cm depth compared with monoculture and crop rotation, respectively. Compared with both annual systems, perennial crops significantly increased soil organic carbon stock regardless of their functional photosynthetic types (C3, C4, or C3-C4 intermediates) and vegetation type (woody or herbaceous). Among other factors, pH had a significant impact on soil organic carbon; however, the effect of soil textures showed no significant impact, possibly due to a lack of observations from each textural class and mixed pedoclimatic effects. Results also showed that time effect of perennialization revealed a sigmoidal increase of soil organic carbon stock until about 20 years; thereafter, the soil carbon stocks advanced towards a steady-state level. In conclusion, perennial crops increased soil organic carbon stock compared with annual systems; however, the time since conversion from annual to perennial system decisively impacted soil organic carbon stock changes.
Funder
Aarhus Universitets Forskningsfond
Innovationsfonden
Royal Danish Library, Aarhus University Library
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Environmental Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献