Soil organic carbon stock change following perennialization: a meta-analysis

Author:

Siddique Imran AhammadORCID,Grados Diego,Chen Ji,Lærke Poul Erik,Jørgensen Uffe

Abstract

AbstractPerennial crops replacing annual crops are drawing global attention because they harbor potential for sustainable biomass production and climate change mitigation through soil carbon sequestration. At present, it remains unclear how long perennial crops can sequester carbon in the soil and how soil carbon stock dynamics are influenced by climate, soil, and plant properties across the globe. This study presents a meta-analysis synthesizing 51 publications (351 observations at 77 sites) distributed over different pedo-climatic conditions to scrutinize the effect of perennialization on organic carbon accumulation in soil compared with two annual benchmark systems (i.e., monoculture and crop rotation). Results showed that perennial crops significantly increased soil organic carbon stock by 16.6% and 23.1% at 0–30 cm depth compared with monoculture and crop rotation, respectively. Shortly after establishment (< 5 years), perennial crops revealed a negative impact on soil organic carbon stock; however, long duration (> 10 years) of perennialization had a significant positive effect on soil organic carbon stock by 30% and 36.4% at 0–30 cm depth compared with monoculture and crop rotation, respectively. Compared with both annual systems, perennial crops significantly increased soil organic carbon stock regardless of their functional photosynthetic types (C3, C4, or C3-C4 intermediates) and vegetation type (woody or herbaceous). Among other factors, pH had a significant impact on soil organic carbon; however, the effect of soil textures showed no significant impact, possibly due to a lack of observations from each textural class and mixed pedoclimatic effects. Results also showed that time effect of perennialization revealed a sigmoidal increase of soil organic carbon stock until about 20 years; thereafter, the soil carbon stocks advanced towards a steady-state level. In conclusion, perennial crops increased soil organic carbon stock compared with annual systems; however, the time since conversion from annual to perennial system decisively impacted soil organic carbon stock changes.

Funder

Aarhus Universitets Forskningsfond

Innovationsfonden

Royal Danish Library, Aarhus University Library

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3