Grain agriculture and the end of the fossil fuel era

Author:

Crews TimothyORCID

Abstract

First paragraphs: A great deal of attention is currently focused on how agriculture in highly industrialized coun­tries contributes to greenhouse gas (GHG) emis­sions, and how certain farming innovations might curb the emissions of nitrous oxide and methane and draw down carbon dioxide from the atmos­phere. What is not being discussed is how agricul­ture in general, and grain agriculture in particular, will need to change as society phases out its dependency on fossil fuels in order to achieve carbon (C) neutrality. Over the last century in the U.S., the number of farmers on the land declined by about 66%, in close proportion to the increase in average farm size (U.S. Department of Agriculture Economic Research Service [USDA ERS], n.d.). Integral to these trends has been the simplification of farming systems in which practices like fertility-generating rotations have been replaced with lower-diversity monocultures maintained by applications of fossil fuel–based fertilizers and pesticides (Crews & Peoples, 2004). Between fossil fuel–powered mechanization and fossil fuel–based input intensi­fication, the energy used by farmers to grow maize in the state of Nebraska is 99.7% from fossil fuels and 0.3% human labor (Grassini & Cassman, 2012; Pimentel & Pimentel, 2008). Even organic farming systems often require prodigious fossil fuel inputs with intensive tractor tillage, manure hauling, and mechanical harvesting (Smith et al., 2015). In con­trast to our modern grain-producing agroeecosys­tems, ancestral agroecosystems and natural ecosys­tems of all types—forests, grasslands, deserts, tundra—have remained productive for millennia with no fossil fuel inputs. In this commentary I explore the dependency of grain agriculture on fossil fuel use in the U.S. set in a global context, and approaches for reducing this dependency, including a shift to perennial polycultures that rely on ecological intensification in place of energy-intensive inputs. . . .

Publisher

Lyson Center for Civic Agriculture and Food Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3