Adaptive data-driven subsampling for efficient neural network inference

Author:

Machidon Alina L.,Pejović Veljko

Abstract

AbstractIn this paper we present a novel data-driven subsampling method that can be seamlessly integrated into any neural network architecture to identify the most informative subset of samples within the original acquisition domain for a variety of tasks that rely on deep learning inference from sampled signals. In contrast to existing methods that require signal transformation into a sparse basis, expensive signal reconstruction as an intermediate step, and that can support a single predefined sampling rate only, our approach allows the sampling inference pipeline to adapt to multiple sampling rates directly in the original signal domain. The key innovations enabling such operation are a custom subsampling layer and a novel training mechanism. Through extensive experiments with four data sets and four different network architectures, our method demonstrates a simple yet powerful sampling strategy that allows the given network to be efficiently utilized at any given sampling rate, while the inference accuracy degrades smoothly and gradually as the sampling rate is reduced. Experimental comparison with state-of-the-art sparse sensing and learning techniques demonstrates competitive inference accuracy at different sampling rates, coupled with a significant improvement in computational efficiency, and the crucial ability to operate at arbitrary sampling rates without the need for retraining.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3