Assessing the impact of JPEG compression on the semantic segmentation of agricultural images
-
Published:2023-07-20
Issue:
Volume:
Page:
-
ISSN:1863-1703
-
Container-title:Signal, Image and Video Processing
-
language:en
-
Short-container-title:SIViP
Author:
Júnior Jocival Dantas Dias,Ribeiro João Batista,Backes André Ricardo
Funder
Fundação de Amparo à Pesquisa do Estado de Minas Gerais Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Signal Processing
Reference12 articles.
1. Bándi, P., Geessink, O., Manson, Q., Dijk, M.V., Balkenhol, M., Hermsen, M., Bejnordi, B.E., Lee, B., Paeng, K., Zhong, A., Li, Q., Zanjani, F.G., Zinger, S., Fukuta, K., Komura, D., Ovtcharov, V., Cheng, S., Zeng, S., Thagaard, J., Chen, H.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(8447230), 550–560 (2019) 2. Bras, G., Fernandes, V.R.M., de Paiva, A.C., Junior, G.B., Rivero, L.: Transfer learning method evaluation for automatic pediatric chest x-ray image segmentation. In: IWSSIP, pp. 128–133. IEEE (2020) 3. Cho, J., Lee, K., Shin, E., Choy, G., Do, S.: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? (2015). arXiv:1511.06348 4. Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak, J.A.W.M.: the CAMELYON16 consortium: diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017). https://doi.org/10.1001/jama.2017.14585 5. Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Gläser, C., Timm, F., Wiesbeck, W., Dietmayer, K.: Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 22(3), 1341–1360 (2021)
|
|