Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)

Author:

Liu Tian,Shi Peijun,Fang Jian

Abstract

AbstractFloods are great threats to human life and property. Extensive research has investigated the spatiotemporal variation in flood occurrence, while few have studied the heterogeneity in global flood events of different sizes, which may require different coping strategies and risk reduction policies. In this study, we analysed the spatiotemporal patterns of global flood events with different affected areas (classified in three levels) during 1985–2019 and examined the contribution of different influencing factors to flood-induced mortality using Geodetector. The results show that (1) the increase in global flood frequency was mainly caused by Level II and Level III floods, and the average area affected by flood events has been increasing yearly since 1985. (2) In America and Africa, the frequency of Level III floods has increased monotonically. At the same time, the frequency of Level I floods in Europe and Level II floods in Asia has increased significantly. (3) For Europe and Asia, most of the deaths occurred with Level II floods; while for America and Africa, Level III floods caused the most mortality. (4) The top three factors contributing to the spatial heterogeneity in flood-induced mortality were the affected population, GDP per capita and flood duration. The contribution of each factor varied among the different types of floods. Topographic factors (percentage of mountainous area) magnified flood-induced mortality during extreme events with heavy rainfall, especially for Level III floods. The heterogeneity in flood frequency and flood-induced mortality indicates that flood protection measures should be more targeted. In addition, the increase in large-scale floods (Level III) highlights the need for transregional cooperation in flood risk management.

Funder

National Key Research & Development program of China

China Scholarship Council, and Expertise-Introduction Project for Disciplinary Innovation of Universities (111 Project)– Hazard and Risk Science Base at Beijing Normal University 2.0

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3