Evaluation of long-term data on surface contamination by antineoplastic drugs in pharmacies

Author:

Quartucci Caroline,Rooney James P. K.,Nowak Dennis,Rakete StefanORCID

Abstract

Abstract Purpose The handling of antineoplastic drugs represents an occupational health risk for employees in pharmacies. To minimize exposure and to evaluate cleaning efficacy, wipe sampling was used to analyze antineoplastic drugs on surfaces. In 2009, guidance values were suggested to facilitate the interpretation of results, leading to a decrease in surface contamination. The goal of this follow-up was to evaluate the time trend of surface contamination, to identify critical antineoplastic drugs and sampling locations and to reassess guidance values. Methods Platinum, 5-fluorouracil, cyclophosphamide, ifosfamide, gemcitabine, methotrexate, docetaxel and paclitaxel were analyzed in more than 17,000 wipe samples from 2000 to 2021. Statistical analysis was performed to describe and interpret the data. Results Surface contaminations were generally relatively low. The median concentration for most antineoplastic drugs was below the limit of detection except for platinum (0.3 pg/cm2). Only platinum and 5-fluorouracil showed decreasing levels over time. Most exceedances of guidance values were observed for platinum (26.9%), cyclophosphamide (18.5%) and gemcitabine (16.6%). The most affected wipe sampling locations were isolators (24.4%), storage areas (17.6%) and laminar flow hoods (16.6%). However, areas with no direct contact to antineoplastic drugs were also frequently contaminated (8.9%). Conclusion Overall, the surface contaminations with antineoplastic drugs continue to decrease or were generally at a low level. Therefore, we adjusted guidance values according to the available data. The identification of critical sampling locations may help pharmacies to further improve cleaning procedure and reduce the risk of occupational exposure to antineoplastic drugs.

Funder

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3