Abstract
AbstractDue to molecular mimicry, maternal antibacterial antibodies are suspected to promote neurodevelopmental changes in the offspring that finally can cause disorders like autism and schizophrenia. Using a human first trimester prenatal brain multiprotein array (MPA), we demonstrate here that antibodies to the digestive tract bacteria Helicobacter pylori (α-HPy) and Campylobacter jejuni (α-CJe) interact with different synaptic proteins, including the calcium sensor synaptotagmin 5 (Syt5). Interactions of both antisera with Syt5 were confirmed by Western blot with a HEK293-cells overexpression lysate of this protein. Immunofluorescence and Western blotting revealed SiMa cells to express Syt5, which also co-migrated with a band/spot labeled by either α-HPy or α-CJe. Functionally, a 12-h pretreatment of SiMa cells with 10 μg/ml of either α-HPy or α-CJe resulted in a significant reduction of acetylcholine(ACh)-dependent calcium signals as compared to controls. Also ACh-dependent vesicle recycling was significantly reduced in cells pretreated with either α-HPy or α-CJe. Similar effects were observed upon pretreatment of SiMa cells with Syt5-specific antibodies. In conclusion, the present study supports the view that prenatal maternal antibacterial immune responses towards HPy and by this to Syt5 are able to cause functional changes, which in the end might contribute also to neurodevelopmental disorders.
Funder
Georg-August-Universität Göttingen
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献