Author:
Bitanihirwe BKY,Lim MP,Kelley JF,Kaneko T,Woo TUW
Abstract
Abstract
Background
We have previously reported that the expression of the messenger ribonucleic acid (mRNA) for the NR2A subunit of the N-methyl-D-aspartate (NMDA) class of glutamate receptor was decreased in a subset of inhibitory interneurons in the cerebral cortex in schizophrenia. In this study, we sought to determine whether a deficit in the expression of NR2A mRNA was present in the subset of interneurons that contain the calcium buffer parvalbumin (PV) and whether this deficit was associated with a reduction in glutamatergic inputs in the prefrontal cortex (PFC) in schizophrenia.
Methods
We examined the expression of NR2A mRNA, labeled with a 35S-tagged riboprobe, in neurons that expressed PV mRNA, visualized with a digoxigenin-labeled riboprobe via an immunoperoxidase reaction, in twenty schizophrenia and twenty matched normal control subjects. We also immunohistochemically labeled the glutamatergic axon terminals with an antibody against vGluT1.
Results
The density of the PV neurons that expressed NR2A mRNA was significantly decreased by 48-50% in layers 3 and 4 in the subjects with schizophrenia, but the cellular expression of NR2A mRNA in the PV neurons that exhibited a detectable level of this transcript was unchanged. In addition, the density of vGluT1-immunoreactive boutons was significantly decreased by 79% in layer 3, but was unchanged in layer 5 of the PFC in schizophrenia.
Conclusion
These findings suggest that glutamatergic neurotransmission via NR2A-containing NMDA receptors on PV neurons in the PFC may be deficient in schizophrenia. This may disinhibit the postsynaptic excitatory circuits, contributing to neuronal injury, aberrant information flow and PFC functional deficits in schizophrenia.
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference90 articles.
1. Fuster JM: The prefrontal cortex. 2008, New York: Elsevier
2. Goldman-Rakic PS: The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biological Psychiatry. 1999, 46 (5): 650-661. 10.1016/S0006-3223(99)00130-4.
3. Baddeley AD: Working memory. 1988, Oxford: Oxford University Press
4. Bowie CR, Harvey PD: Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin North Am. 2005, 28 (3): 613-633. 10.1016/j.psc.2005.05.004.
5. Lisman JE, Fellous JM, Wang XJ: A role for NMDA-receptor channels in working memory. Nat Neurosci. 1998, 1 (4): 273-275. 10.1038/1086.
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献