Author:
Ilmonen Pauliina,Torres Soledad,Viitasaari Lauri
Abstract
AbstractIn this article we introduce and study oscillating Gaussian processes defined by $$X_t = \alpha _+ Y_t \mathbf{1}_{Y_t >0} + \alpha _- Y_t\mathbf{1}_{Y_t<0}$$
X
t
=
α
+
Y
t
1
Y
t
>
0
+
α
-
Y
t
1
Y
t
<
0
, where $$\alpha _+,\alpha _->0$$
α
+
,
α
-
>
0
are free parameters and Y is either stationary or self-similar Gaussian process. We study the basic properties of X and we consider estimation of the model parameters. In particular, we show that the moment estimators converge in $$L^p$$
L
p
and are, when suitably normalised, asymptotically normal.
Publisher
Springer Science and Business Media LLC
Subject
Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献