A technique for evaluating and improving the semantic transparency of modeling language notations

Author:

Bork DominikORCID,Roelens Ben

Abstract

AbstractThe notation of a modeling language is of paramount importance for its efficient use and the correct comprehension of created models. A graphical notation, especially for domain-specific modeling languages, should therefore be aligned to the knowledge, beliefs, and expectations of the targeted model users. One quality attributed to notations is their semantic transparency, indicating the extent to which a notation intuitively suggests its meaning to untrained users. Method engineers should thus aim at semantic transparency for realizing intuitively understandable notations. However, notation design is often treated poorly—if at all—in method engineering methodologies. This paper proposes a technique that, based on iterative evaluation and improvement tasks, steers the notation toward semantic transparency. The approach can be efficiently applied to arbitrary modeling languages and allows easy integration into existing modeling language engineering methodologies. We show the feasibility of the technique by reporting on two cycles of Action Design Research including the evaluation and improvement of the semantic transparency of the Process-Goal Alignment modeling language notation. An empirical evaluation comparing the new notation against the initial one shows the effectiveness of the technique.

Funder

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

Reference65 articles.

1. ADOxx.org: ADOxx Metamodelling Platform (2020). https://www.adoxx.org/live/home. Accessed 21 Sept 2020

2. Batini, C., Ceri, S., Navathe, S.B., et al.: Conceptual Database Design: An Entity-Relationship Approach, vol. 116. Benjamin/Cummings, Redwood City (1992)

3. Bork, D.: A development method for the conceptual design of multi-view modeling tools with an emphasis on consistency requirements. Ph.D. thesis, University of Bamberg (2015). https://d-nb.info/1079840273/34

4. Bork, D., Buchmann, R.A., Karagiannis, D., Lee, M., Miron, E.T.: An open platform for modeling method conceptualization: the OMiLAB digital ecosystem. Commun. Assoc. Inf. Syst. 44, 673–697 (2019)

5. Bork, D., Karagiannis, D., Pittl, B.: Systematic analysis and evaluation of visual conceptual modeling language notations. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1–11. IEEE (2018)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3