Assessing the specification of modelling language semantics: a study on UML PSSM

Author:

Elekes Márton,Molnár Vince,Micskei ZoltánORCID

Abstract

AbstractModelling languages play a central role in developing complex, critical systems. A precise, comprehensible, and high-quality modelling language specification is essential to all stakeholders using, implementing, or extending the language. Many good practices can be found that improve the understandability or consistency of the languages’ semantics. However, designing a modelling language intended for a large audience is still challenging. In this paper, we investigate the challenges and typical issues with assessing the specifications of behavioural modelling language semantics. Our key insight is that the various stakeholder’s understandings of the language’s semantics are often misaligned, and the semantics defined in various artefacts (simulators, test suites) are inconsistent. Therefore assessment of semantics should focus on identifying and resolving these inconsistencies. To illustrate these challenges and techniques, we assessed parts of a state-of-the-art specification for a general-purpose modelling language, the Precise Semantics of UML State Machines (PSSM). We reviewed the text of the specification, analysed and executed PSSM’s conformance test suite, and categorised our experiences according to questions generally relevant to modelling languages. Finally, we made recommendations for improving the development of future modelling languages by representing the semantic domain and traces more explicitly, applying diverse test design techniques to obtain conformance test suites, and using various tools to support early-phase language design.

Funder

H2020 Excellent Science

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Close Enough? Criteria for Sufficient Simulations of IEC 61499 Models;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

2. Pragmatic verification and validation of industrial executable SysML models;Systems Engineering;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3