Ontologies for finding journalistic angles

Author:

Opdahl Andreas L.,Tessem Bjørnar

Abstract

AbstractJournalism relies more and more on information and communication technology (ICT). ICT-based journalistic knowledge platforms continuously harvest potentially news-relevant information from the Internet and make it useful for journalists. Because information about the same event is available from different sources and formats vary widely, knowledge graphs are emerging as a preferred technology for integrating, enriching, and preparing information for journalistic use. The paper explores how journalistic knowledge graphs can be augmented with support for news angles, which can help journalists to detect newsworthy events and make them interesting for the intended audience. We argue that finding newsworthy angles on news-related information is an important example of a topical problem in information science: that of detecting interesting events and situations in big data sets and presenting those events and situations in interesting ways.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

Reference51 articles.

1. Al-Moslmi, T., Ocaña, M.G., Opdahl, A.L., Veres, C.: Named entity extraction for knowledge graphs: a literature overview. IEEE Access 8, 32862–32881 (2020)

2. Al-Moslmi, T., Ocaña, M.G., Opdahl, A.L., Tessem, B.: Detecting Newsworthy Events in a Journalistic Platform. Paper presented at the European Data and Computational Journalism Conference, Malaga, Spain (June 2019)

3. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Elsevier, Amsterdam (2011)

4. Berven, A., Christensen, O.A., Moldeklev, S., Opdahl, A.L., Villanger, K.J.: News Hunter: building and mining knowledge graphs for newsroom systems. NOKOBIT 26, 1–11 (2018)

5. Bizer, C., Heath, T., Berners-Lee, T. Linked data: the story so far. In: Semantic Services, Interoperability and Web Applications: emerging concepts. pp. 205–227. IGI Global (2011)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lost in Recursion: Mining Rich Event Semantics in Knowledge Graphs;ACM Web Science Conference;2024-05-21

2. Rigor e relevância na Ciência da Informação;Informação & Informação;2024-05-03

3. Understanding Practices around Computational News Discovery Tools in the Domain of Science Journalism;Proceedings of the ACM on Human-Computer Interaction;2024-04-17

4. A Blackboard Model for Flexible and Parallel Text Annotation;IEEE Access;2024

5. Comparison of news commonality and churn in international news outlets with TARO;Proceedings of the 34th ACM Conference on Hypertext and Social Media;2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3