Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. M. Barchiesi, A. Brancolini and V. Julin, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality, Annals of Probability 45 (2017), 668–697.
2. S. G. Bobkov, N. Gozlan, C. Roberto and P.-M. Samson, Bounds on the deficit in the logarithmic Sobolev inequality, Journal of Functional Analysis 267 (2014), 4110–4138.
3. C. Borell, The Ehrhard inequality, Comptes Rendus Mathématique. Académie des Sciences. Paris 337 (2003), 663–666.
4. A. A. Borovkov and S. A. Utev, An inequality and a characterization of the normal distribution connected with it, Teoriya Veroyatnosteĭ i ee Primeneniya 28 (1983), 209–218.
5. H. J. Brascamp and E. H. Lieb, On extensions of the Brunn—Minkowski and Prékopa—Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, Journal of Functional Analysis 22 (1976), 366–389.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献