Affiliation:
1. University of Illinois at Urbana–Champaign, USA
Abstract
<p style='text-indent:20px;'>We show that there are no general stability results for the logarithmic Sobolev inequality in terms of the Wasserstein distances and <inline-formula><tex-math id="M1">\begin{document}$ L^{p}(d\gamma) $\end{document}</tex-math></inline-formula> distance for <inline-formula><tex-math id="M2">\begin{document}$ p>1 $\end{document}</tex-math></inline-formula>. To this end, we construct a sequence of centered probability measures such that the deficit of the logarithmic Sobolev inequality converges to zero but the relative entropy and the moments do not, which leads to instability for the logarithmic Sobolev inequality. As an application, we prove instability results for Talagrand's transportation inequality and the Beckner–Hirschman inequality.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference24 articles.
1. K. I. Babenko.An inequality in the theory of Fourier integrals, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 531-542.
2. F. Barthe, A. V. Kolesnikov.Mass transport and variants of the logarithmic Sobolev inequality, J. Geom. Anal., 18 (2008), 921-979.
3. W. Beckner.Inequalities in Fourier analysis, Ann. of Math., 102 (1975), 159-182.
4. S. G. Bobkov, N. Gozlan, C. Roberto, P.-M. Samson.Bounds on the deficit in the logarithmic Sobolev inequality, J. Funct. Anal., 267 (2014), 4110-4138.
5. F. Bolley, I. Gentil, A. Guillin.Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities, Ann. Probab., 46 (2018), 261-301.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献