Bayesian Deep Learning for Spatial Interpolation in the Presence of Auxiliary Information

Author:

Kirkwood CharlieORCID,Economou Theo,Pugeault Nicolas,Odbert Henry

Abstract

Abstract Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included as covariates) are relatively restrictive models and lack capabilities provided by deep neural networks. Principal among these is feature learning: the ability to learn filters to recognise task-relevant patterns in gridded data such as images. Here, we demonstrate the power of feature learning in a geostatistical context by showing how deep neural networks can automatically learn the complex high-order patterns by which point-sampled target variables relate to gridded auxiliary variables (such as those provided by remote sensing) and in doing so produce detailed maps. In order to cater for the needs of decision makers who require well-calibrated probabilities, we also demonstrate how both aleatoric and epistemic uncertainty can be quantified in our deep learning approach via a Bayesian approximation known as Monte Carlo dropout. In our example, we produce a national-scale probabilistic geochemical map from point-sampled observations with auxiliary data provided by a terrain elevation grid. By combining location information with automatically learned terrain derivatives, our deep learning approach achieves an excellent coefficient of determination ($$R^{2} = 0.74$$ R 2 = 0.74 ) and near-perfect probabilistic calibration on held-out test data. Our results indicate the suitability of Bayesian deep learning and its feature-learning capabilities for large-scale geostatistical applications where uncertainty matters. Graphic Abstract

Funder

Engineering and Physical Sciences Research Council

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Reference78 articles.

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283

2. Alzubaidi F, Mostaghimi P, Swietojanski P, Clark SR, Armstrong RT (2021) Automated lithology classification from drill core images using convolutional neural networks. J Pet Sci Eng 197:107933

3. Berger JO (1985) Statistical decision theory and bayesian analysis. Springer, Berlin

4. British Geological Survey (2020) Geology of Britain Viewer. Accessed through online web interface at http://mapapps.bgs.ac.uk/geologyofbritain/home.html

5. Cawley GC, Janacek GJ, Haylock MR, Dorling SR (2007) Predictive uncertainty in environmental modelling. Neural Netw 20(4):537–549

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3