Uncertainty Quantification in Geochemical Mapping: A Review and Recommendations

Author:

Wang J.1ORCID,Zuo R.2ORCID

Affiliation:

1. College of Earth Sciences Chengdu University of Technology Chengdu China

2. State Key Laboratory of Geological Processes and Mineral Resources China University of Geosciences Wuhan China

Abstract

AbstractGeochemical mapping is a crucial tool that can provide valuable insights for a wide range of applications, including mineral resources prospecting, environmental impact assessment, geological process understanding, and climate change research. Despite its significance, geochemical mapping requires spatial modeling based on sparse, heterogeneous, and potentially inaccurate data sets. Moreover, the underlying geological processes are often imperfectly understood. Therefore, uncertainty quantification (UQ) is vital in geochemical mapping to ensure accurate and reliable results, ultimately facilitating well‐informed decision‐making. In this contribution, we distinguish two primary types of uncertainties: systemic and stochastic. We identify the key sources of uncertainties in geochemical mapping and review the techniques that have been employed or hold potential for uncertainty quantification, communication, visualization, and sensitivity analysis. This contribution also illustrates the general procedure of UQ in geochemical mapping by a case study of mapping geochemical anomalies associated with gold mineralization in northwestern Sichuan Province, China. We also explore potential strategies for mitigating the critical uncertainties, such as gathering more geochemical data, developing more effective models, enhancing our understanding of the geochemical dispersion process, or leveraging other thematic information or knowledge. Future research should prioritize addressing underexplored uncertainties and implementing more practical applications to validate the UQ procedure in geochemical mapping.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3