Formal Verification of Robotic Cell Injection systems up to 4-DOF using HOL Light

Author:

Rashid Adnan1ORCID,Hasan Osman1

Affiliation:

1. School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan

Abstract

Abstract Cell injection is an approach used for the delivery of small sample substances into a biological cell and is widely used in drug development, gene injection, intracytoplasmic sperm injection and in-vitro fertilization. Robotic cell injection systems provide the automation of the process as opposed to the manual and semi-automated cell injection systems, which require expert operators and involve time consuming processes and also have lower success rates. The automation of the cell injection process is obtained by controlling the orientation and movement of its various components, like injection manipulator, microscope etc., and planning the motion of the injection pipette by controlling the force of the injection. The conventional techniques to analyze the cell injection process include paper-and-pencil proof and computer simulation methods. However, both these techniques suffer from their inherent limitations, such as, proneness to human error for the former and the approximation of the mathematical expressions involved in the numerical algorithms for the latter. Formal methods have the capability to overcome these limitations and can provide an accurate analysis of these cell injection systems. Model checking, i.e., a state-based formal method, has been recently used for analyzing these systems. However, it involves the discretization of the differential equations capturing the continuous dynamics of the system and thus compromises on the completeness of the analysis of these safety-critical systems. In this paper, we propose a higher-order-logic theorem proving (a deductive-reasoning based formal method) based framework for analyzing the dynamical behavior of the robotic cell injection systems upto 4-DOF. The proposed analysis, based on the HOL Light theorem prover, enabled us to identify some discrepancies in the simulation and model checking based analysis of the same robotic cell injection system.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formalization of the inverse kinematics of three-fingered dexterous hand;Journal of Logical and Algebraic Methods in Programming;2023-06

2. Formalization of bond graph using higher-order-logic theorem proving;ISA Transactions;2021-12

3. Dynamic incentive mechanism design for regulation‐aware systems;International Journal of Intelligent Systems;2021-09-17

4. Regulation-as-a-Service: Model Checking for Decision-Making Behaviors in Price-Sensitive Service Systems;2021 IEEE International Conference on Services Computing (SCC);2021-09

5. Formal Verification of Robotic Cell Injection systems up to 4-DOF using HOL Light;Formal Aspects of Computing;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3