Building program construction and verification tools from algebraic principles

Author:

Armstrong Alasdair1,Gomes Victor B. F.1,Struth Georg1

Affiliation:

1. Department of Computer Science, University of Sheffield, Sheffield, UK

Abstract

Abstract We present a principled modular approach to the development of construction and verification tools for imperative programs, in which the control flow and the data flow are cleanly separated. Our simplest verification tool uses Kleene algebra with tests for the control flow of while-programs and their standard relational semantics for the data flow. It is expanded to a basic program construction tool by adding an operation for the specification statement and one single axiom. To include recursive procedures, Kleene algebras with tests are expanded further to quantales with tests. In this more expressive setting, iteration and the specification statement can be defined explicitly and stronger program transformation rules can be derived. Programming our approach in the Isabelle/HOL interactive theorem prover yields simple lightweight mathematical components as well as program construction and verification tools that are correct by construction themselves. Verification condition generation and program construction rules are based on equational reasoning and supported by powerful Isabelle tactics and automated theorem proving. A number of examples shows our tools at work.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modal algebra of multirelations;Journal of Logic and Computation;2024-05-28

2. Modeling and analysing Cyber–Physical Systems in HOL-CSP;Robotics and Autonomous Systems;2023-12

3. On the Complexity of Kleene Algebra with Domain;Relational and Algebraic Methods in Computer Science;2023

4. Modeling and proving hybrid programs with Event-B: An approach by generalization and instantiation;Science of Computer Programming;2022-10

5. Transition Algebra for Software Testing;IEEE Transactions on Reliability;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3