A verification-driven framework for iterative design of controllers

Author:

Menghi Claudio1ORCID,Spoletini Paola2,Chechik Marsha3,Ghezzi Carlo4

Affiliation:

1. University of Luxembourg, Luxembourg, Luxembourg

2. Kennesaw State University, Marietta, USA

3. University of Toronto, Toronto, Canada

4. Politecnico di Milano, Milan, Italy

Abstract

Abstract Controllers often are large and complex reactive software systems and thus they typically cannot be developed as monolithic products. Instead, they are usually comprised of multiple components that interact to provide the desired functionality. Components themselves can be complex and in turn be decomposed into multiple sub-components. Designing such systems is complicated and must follow systematic approaches, based on recursive decomposition strategies that yield a modular structure. This paper proposes FIDDle–a comprehensive verification-driven framework which provides support for designers during development. FIDDle supports hierarchical decomposition of components into sub-components through formal specification in terms of pre- and post-conditions as well as independent development, reuse and verification of sub-components. The framework allows the development of an initial, partially specified design of the controller, in which certain components, yet to be defined, are precisely identified. These components can be associated with pre- and post-conditions, i.e., a contract, that can be distributed to third-party developers. The framework ensures that if the components are compliant with their contracts, they can be safely integrated into the initial partial design without additional rework. As a result, FIDDle supports an iterative design process and guarantees correctness of the system at any step of development. We evaluated the effectiveness of FIDDle in supporting an iterative and incremental development of components using the K9 Mars Rover example developed at NASA Ames. This can be considered as an initial, yet substantive, validation of the approach in a realistic setting. We also assessed the scalability of FIDDle by comparing its efficiency with the classical model checkers implemented within the LTSA toolset. Results show that FIDDle scales as well as classical model checking as the number of the states of the components under development and their environments grow.

Funder

Horizon 2020 Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing Abstractions for Cyber-Physical Control Systems;ACM Transactions on Software Engineering and Methodology;2023-11-23

2. Towards Quantum Requirements Engineering;2023 IEEE 31st International Requirements Engineering Conference Workshops (REW);2023-09

3. Formalism-Driven Development: Concepts, Taxonomy, and Practice;Applied Sciences;2022-03-27

4. Formalism- Driven Development of Decentralized Systems;2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS);2022-03

5. TOrPEDO: witnessing model correctness with topological proofs;Formal Aspects of Computing;2021-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3