Using Event-B to construct instruction set architectures

Author:

Wright Stephen1,Eder Kerstin1

Affiliation:

1. Department of Computer Science, University of Bristol, Bristol, UK

Abstract

Abstract The instruction set architecture (ISA) of a computing machine is the definition of the binary instructions, registers, and memory space visible to an executable binary image. ISAs are typically implemented in hardware as microprocessors, but also in software running on a host processor, i.e. virtual machines (VMs). Despite there being many ISAs in existence, all share a set of core properties which have been tailored to their particular applications. An abstract model may capture these generic properties and be subsequently refined to a particular machine, providing a reusable template for development of robust ISAs by the formal construction of all normal and exception conditions for each instruction. This is a task to which the Event-B (Metayer et al. in Rodin deliverable 3.2 Event-B language, http://rodin.cs.ncl.ac.uk , 2005; Schneider in The B-method an introduction, Palgrave, Basingstoke, 2001) formal notation is well suited. This paper describes a project to use the Rodin tool-set (Abrial in Formal methods and software engineering, Springer, Berlin, 2006) to perform such a process, ultimately producing two variants of the MIDAS (Microprocessor Instruction and Data Abstraction System) ISA (Wright in Abstract state machines, B and Z, Springer, Berlin, 2007; Wright in MIDAS machine specification, Bristol University, http://www.cs.bris.ac.uk/Publications , 2009) as VMs. The abstract model is incrementally refined to variant models capable of automatic translation to C source code, which this is compiled to create useable VMs. These are capable of running binary executables compiled from high-level languages such as C (Kernighan and Ritchie in The C programming language, Prentice-Hall, Englewood Cliffs, 1988), and compilers targeted to each variant allow demonstration programs to be executed on them.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3