Electrode Surface Coverage with Deposit Generated Under Conditions of Electrochemical Nucleation and Growth. A Mathematical Analysis

Author:

Grdeń M.ORCID,Próchniak M.ORCID

Abstract

AbstractThe theory of the diffusion limited electrochemical nucleation and growth of a deposit consisting of isolated 3D hemispherical nuclei has been re-analysed. The analysis focuses on a widely discussed model which assumes formation of “diffusion zones” around the growing nuclei. It has been proposed in the literature that the deposit-free fraction of the surface area of the substrate can be directly calculated from the substrate coverage with the “diffusion zones”. The aim of this work is to analyse whether such an approach can be applied for the growth of isolated 3D hemispherical nuclei. This is accomplished by evaluation of equations which describe nuclei radii at various stages of the deposition process. The formulae allow determining the substrate surface coverage with the growing deposit. This, in turn, allows simulating and analysing faradaic currents due to other than the electrodeposition reactions which take place at the deposit-free fraction of the substrate surface. Both instantaneous and progressive modes of the nucleation are discussed and the influence of the nucleation type on the faradaic currents is outlined. A comparison with other approaches reported in the literature indicates that the deposit-free fraction of the substrate surface may not always be determined by means of recalculation of the substrate coverage with the “diffusion zones”. Graphical abstract

Funder

European Social Fund

Wydział Chemii, Uniwersytet Warszawski

Publisher

Springer Science and Business Media LLC

Subject

Electrochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3