Experimental and numerical investigation of the deep rolling process focussing on 34CrNiMo6 railway axles

Author:

Pertoll TobiasORCID,Buzzi ChristianORCID,Dutzler AndreasORCID,Leitner MartinORCID,Seisenbacher BenjaminORCID,Winter Gerhard,Boronkai László

Abstract

AbstractDeep rolling is a powerful tool to increase the service life or reduce the weight of railway axles. Three fatigue-resistant increasing effects are achieved in one treatment: lower surface roughness, strain hardening and compressive residual stresses near the surface. In this work, all measurable changes introduced by the deep rolling process are investigated. A partly deep-rolled railway axle made of high strength steel material 34CrNiMo6 is investigated experimentally. Microstructure analyses, hardness-, roughness-, FWHM- and residual stress measurements are performed. By the microstructure analyses a very local grain distortion, in the range < 5 µm, is proven in the deep rolled section. Stable hardness values, but increased strain hardening is detected by means of FWHM and the surface roughness is significantly reduced by the process application. Residual stresses were measured using the XRD and HD methods. Similar surface values are proven, but the determined depth profiles deviate. Residual stress measurements have generally limitations when measuring in depth, but especially their distribution is significant for increasing the durability of steel materials. Therefore, a numerical deep rolling simulation model is additionally built. Based on uniaxial tensile and cyclic test results, examined on specimen machined from the edge layer of the railway axle, an elastic–plastic Chaboche material model is parameterised. The material model is added to the simulation model and so the introduced residual stresses can be simulated. The comparison of the simulated residual stress in-depth profile, considering the electrochemical removal, shows good agreement to the measurement results. The so validated simulation model is able to determine the prevailing residual stress state near the surface after deep rolling the railway axle. Maximum compressive residual stresses up to about -1,000 MPa near the surface are achieved. The change from the induced compressive to the compensating tensile residual stress range occurs at a depth of 3.5 mm and maximum tensile residual stresses of + 100 MPa at a depth of 4 mm are introduced. In summary, the presented experimental and numerical results demonstrate the modifications induced by the deep rolling process application on a railway axle and lay the foundation for a further optimisation of the deep rolling process.

Funder

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3