Analytical and Numerical Crack Growth Analysis of 1:3 Scaled Railway Axle Specimens

Author:

Simunek David,Leitner Martin,Maierhofer Jürgen,Gänser Hans-PeterORCID,Pippan Reinhard

Abstract

This paper deals with experimental fatigue crack propagation in rotating bending loaded round bar specimens as well as an analytical and numerical analysis of the residual lifetime. Constant amplitude (CA) load tests are performed with the surface crack length being evaluated using an optical measurement system. Fracture surfaces are microscopically analyzed to determine crack growth in depth as well as the crack shape. In spite of identical testing conditions, the experimental results show some scatter in residual lifetime, which is mainly caused by different residual stress states. Although X-ray residual stress measurements reveal only minor values, a superposition of the residual stress state with the load-induced stress leads to a significant impact on the residual lifetime calculations, which explains the experimental scatter. Numerical analyses are conducted to consider the residual stress state and their effect on crack propagation by different options. Considering the residual stress distribution in depth within the residual lifetime assessment, the deviation to the most conservative experiment is reduced from +48% to +2%. In conclusion, the results in this paper highlight that it is of utmost importance to consider local residual stress conditions in the course of a crack propagation analysis in order to properly assess the residual lifetime.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3