A correlation analysis method for analyzing tribological states using acoustic emission, frictional coefficient, and contact resistance signals

Author:

Tian Pengyi,Tian Yu,Shan Lei,Meng Yonggang,Zhang Xiangjun

Abstract

Abstract A multi-physical signal correlation analysis method is proposed to identify the different tribological properties of materials. The acoustic emission (AE), contact resistance, and frictional force behaviors during dry sliding between four metals, 45# carbon steel, YG12 carbide, 2A12 aluminum alloy, and H62 brass, have been studied. Both positive and negative correlations between the root mean square of the amplified AE (AE RMS) signal and the frictional coefficient have been found in the experiments. In addition, the AE RMS signal and the contact resistance changed with changing sliding speed and normal load in different ways. The different correlation behaviors have been attributed to diverse tribological states under different experimental conditions due to different material characteristics. The correlation analysis provides a new method of quantitatively identifying the tribological states and the AE sources during frictional interaction. The observed anomalous correlations between the AE signal and frictional coefficient should be properly considered according to the different material properties during industrial friction condition monitoring using AE technology.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3