The correlation between friction coefficient and areal topography parameters for AISI 304 steel sliding against AISI 52100 steel

Author:

Prajapati Deepak K.,Tiwari Mayank

Abstract

AbstractDry wear experiments provide an insight detail on how severely contacting surfaces change under unlubricated sliding condition. The theory of dry sliding wear is used for understanding mixed-lubrication regime in which asperity interactions play a significant role in controlling of the friction coefficient (f). The purpose of this work is to study the tribological behavior of AISI 304 steel in contact with AISI 52100 steel during wear. Both materials are used in rolling element bearings commanly. Experiments are carried out using a pin-on-disc tribometer under dry friction condition. The areal (three dimensional, 3D) topography parameters are measured using a 3D white light interferometer (WLI) with a 10× objective. After wear tests, wear mechanisms are analyzed utilizing scanning electron microscope (SEM). Factorial design with custom response surface design (C-RSD) is used to study the mutual effect of load and speed on response variables such as f and topography parameters. It is observed that the root mean square roughness (Sq) decreases with an increase in sliding time. Within the range of sliding time, Sq decreases with an increase in the normal load. Within the range of sliding speed and normal load, it is found that Sq, mean summit curvature (Ssc), and root mean square slope (Sdq) are positively correlated with f. Whereas, negative correlation is found between f and correlation length (Sal), mean summit radius (R), and core roughness depth (Sk).

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3