Quantitative analysis of the tribological properties of phosphate glass at the nano- and macro-scales

Author:

Qi Huimin,Hu Wen,He Hongtu,Zhang Yafeng,Song Chenfei,Yu Jiaxin

Abstract

AbstractProcessing (grinding, polishing) of phosphate laser (PL) glass involves material removal at two vastly different (spatial) scales. In this study, the nano- and macro-tribological properties of PL glass are investigated by rubbing the glass against a SiO2 counter-surface in both dry and humid conditions. The results indicate that the friction of the PL glass/SiO2 pair has opposing trends at the nano- and macro-scales. At the nanoscale, the friction coefficient (COF) in humid air is much higher than in dry air, which is attributed to the capillary effect of the absorbed water-film at the interface. At the macroscale, on the other hand, the COF in humid air is lower than in dry air, because the water-related mechanochemical wear makes the worn surface less susceptible to cracking. Material removal for PL glass is better facilitated by humid air than by dry air at both scales, because the stress-enhanced hydrolysis accelerates the material-removal process in glass. Moreover, the material-removal is more sensitive to contact pressure at the macroscale, because stronger mechanical-interaction occurs during material removal at the macroscale with the multi asperity contact mode. At the macroscale, the material removal is more sensitive to contact pressure in humid air compared to dry air. Because almost all mechanical energy is used to remove material in humid air, and most of the mechanical energy is used to produce cracks in PL glass in dry air. The results of this study can help optimize the multi-scale surface processing of optical glasses.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3