Attachment ability of combined biomimetic adhesive micro-textures of different shapes

Author:

Badler David,Kligerman Yuri,Kasem Haytam

Abstract

AbstractThere are various potential applications of biomimetic adhesive solutions including climbing robotic systems, mobile sensor platforms, and biomedical applications such as patches for external use. Achieving resistance to both normal and tangential loads, however, is a critical issue that still needs to be addressed. Some animals have developed exceptional attachment mechanisms based on combined fibrillar elements of different shapes and functions. Experimental investigation of combined biomimetic adhesive micro-textures on tribological performances such as adhesion, friction, and peeling resistance is needed to apply this idea to the design of an artificial texture having similar “biomimetic” properties. In the present study, we demonstrate that combinations of different shapes of biomimetic adhesive micro-textures show increased efficiency under different contact environments and enable long-term adhesive solutions. Our work sheds light on combinations of different element shapes inspired by nature and their adhesive efficiency as a function of the ratio of each biomimetic element, as well as their spatial repartition.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3