Author:
Zhang Chuanwei,Zhai Han,Sun Dong,Zheng Dezhi,Zhao Xiaoli,Gu Le,Wang Liqin
Abstract
AbstractThe thermal shock of subsurface material with shear instability and severe plastic flow during scuffing was investigated. The scuffing damage of M50 steel was tested using a high-speed rolling—sliding contact test rig, and the transient temperature during scuffing was calculated using the Fourier transform method considering the effects of both frictional heat and plastic work. The results show that a thermal shock with a rapid rise and subsequent rapid decrease in the contact temperature is generated in the subsurface layers. The frictional power intensity generates a high temperature rise, leading to the austenitization of the subsurface material. Consequently, the plastic flow is generated in the subsurface layer under the high shear stress, and the resulting plastic strain energy generates a further temperature increase. Subsequently, a rapid decrease in the contact temperature quenches the material, resulting in clear shear slip bands and retained austenite in the subsurface layers of the M50 steel.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献