Effect of friction on the contact stress of a coated polymer gear

Author:

Bae Su-Min,Seo Kuk-Jin,Kim Dae-Eun

Abstract

AbstractPolymer gears are used extensively in various applications. However, durability issues have been emerging because of friction at gear tooth contact areas. To extend the lifetime of polymer gears, a low-frictional coating has been considered as a possible strategy. In this study, a finite element simulation method was performed to investigate the contact stress between a pair of coated polymer gears. The simulation included various friction coefficients (COFs) for studying the effects of friction during the operation. Numerical results revealed that the friction causes the contact stress to shift over the roll angle, which is attributed to the direction of the sliding friction based on a free-body diagram. We also investigated the effects of coating and found that a thin coating has little effect on the bulk deformation behavior of the gear. Moreover, the stress distribution in the coating at the pitch point was investigated as the COF increased. Under zero friction, three notable stress regions were observed: 1) the center of the surface, 2) the end of the contact, and 3) the overall contact area. As COF was increased in the micro-slip region of the contact interface, both tensile and compressive stresses in the coating increased. This study provides significant aid to engineers for understanding the stress response of the coating applied to polymer gears to achieve an optimal design.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3