Dynamics of lubricated spiral bevel gears under different contact paths

Author:

Cao Wei,He Tao,Pu Wei,Xiao Ke

Abstract

AbstractTo assess the meshing quality of spiral bevel gears, the static meshing characteristics are usually checked under different contact paths to simulate the deviation in the footprint from the design point to the heel or toe of the gear flank caused by the assembly error of two gear axes. However, the effect of the contact path on gear dynamics under lubricated conditions has not been reported. In addition, most studies regarding spiral bevel gears disregard the lubricated condition because of the complicated solutions of mixed elastohydrodynamic lubrication (EHL). Hence, an analytical friction model with a highly efficient solution, whose friction coefficient and film thickness predictions agree well with the results from a well-validated mixed EHL model for spiral bevel gears, is established in the present study to facilitate the study of the dynamics of lubricated spiral bevel gears. The obtained results reveal the significant effect of the contact path on the dynamic response and meshing efficiency of gear systems. Finally, a comparison of the numerical transmission efficiency under different contact paths with experimental measurements indicates good agreement.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3