Non-Newtonian thermal elastohydrodynamic mixed lubrication in elliptical contact for nutation-driven double circular-arc spiral bevel gear pair

Author:

Pan Ling12,Yin Zhiqiang12ORCID,Lin Bin12,Zeng Yi1,Zhang Jun1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

2. Fuzhou Friction and Lubrication Industry Technology Innovation Center, Fuzhou, China

Abstract

The new type of nutation reducer with double circular-arc bevel gears as the core is characterized by advantages such as high load-bearing capacity, large transmission ratio, and simple structure. The existing research focuses on the machining methods of gears and the analysis of tooth contact. This article first time establishes an elastohydrodynamic mixed lubrication model for nutation double circular-arc bevel gear. The model's accuracy is verified by comparing it with existing test results. On this basis, combined with the finite element method and tooth contact analysis, the meshing characteristics, tooth contact characteristics, and lubrication characteristics of the double circular-arc bevel gear tooth surface are analyzed. The results show that the entrainment velocity at the contact point of the tooth surface during transmission is much higher than the sliding velocity. Consequently, the meshing motion is close to pure rolling. In constant-speed transmission, the oil film thickness at the engaging-in and exit points near the edge of the tooth surface is smaller than that at other meshing points on the tooth surface. This phenomenon can easily lead to mixed lubrication and lubrication failure, as well as tooth surface wear. During deceleration, i.e., when the speed drops to 50 r/min, the oil film thickness approaches zero, indicating that the gear has entered a mixed lubrication state. The proposed model can be used for lubrication analysis and improving transmission accuracy of nutation double circular-arc bevel gears.

Funder

Fujian Industry-University-Research Cooperation Program

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3