Nanotribology of SiP nanosheets: Effect of thickness and sliding velocity

Author:

Wu Zishuai,Yu Tongtong,Wu Wei,Liu Jianxi,Zhang Zhinan,Wang Daoai,Liu Weimin

Abstract

AbstractTwo-dimensional compounds combining group IV A element and group V A element were determined to integrate the advantages of the two groups. As a typical 2D group IV–V material, SiP has been widely used in photodetection and photocatalysis due to its high carrier mobility, appropriate bandgap, high thermal stability, and low interlayer cleavage energy. However, its adhesion and friction properties have not been extensively grasped. Here, large-size and high-quality SiP crystals were obtained by using the flux method. SiP nanosheets were prepared by using mechanical exfoliation. The layer-dependent and velocity-dependent nanotribological properties of SiP nanosheets were systematically investigated. The results indicate the friction force of SiP nanosheets decreases with the increase in layer number and reaches saturation after five layers. The coefficient of friction of multilayer SiP is 0.018. The mean friction force, frictional vibrations, and the friction strengthening effect can be affected by sliding velocity. Specially, the mean friction force increases with the logarithm of sliding velocity at nm/s scale, which is dominated by atomic stick-slip. The influence of frequency on frictional vibration is greater than speed due to the different influences on the change in contact quality. The friction strengthening saturation distance increases with the increase in speed for thick SiP nanosheets. These results provide an approach for manipulating the nanofriction properties of SiP and serve as a theoretical basis for the application of SiP in solid lubrication and microelectromechanical systems.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3