Hydration lubrication modulated by water structure at TiO2-aqueous interfaces

Author:

Ma Pingsu,Liu Yuan,Han Ke,Tian Yu,Ma Liran

Abstract

AbstractThe nature of solid–liquid interfaces is of great significance in lubrication. Remarkable advances have been made in lubrication based on hydration effects. However, a detailed molecular-level understanding is still lacking. Here, we investigated water molecule behaviors at the TiO2–aqueous interfaces by the sum-frequency generation vibrational spectroscopy (SFG-VS) and atomic force microscope (AFM) to elucidate the fundamental role of solid–liquid interfaces in lubrication. Combined contributions of water structures and hydration effects were revealed, where water structures played the dominant role in lubrication for TiO2 surfaces of varying hydrophilicity, while hydration effects dominated with the increasing of ion concentrations. Superior lubrication is observed on the initial TiO2 surfaces with strongly H-bonded water molecules compared to the hydrophilic TiO2 surfaces with more disordered water. The stable ordered water arrangement with strong hydrogen bonds and the shear plane occurring between the ordered water layer and subsequent water layer may play a significant role in achieving lower friction. More adsorbed hydrated molecules with the increasing ionic concentration perturb ordered water but lead to the enhancement of hydration effects, which is the main reason for the improved lubrication for both TiO2. This work provides more insights into the detailed molecular-level understanding of the mechanism of hydration lubrication.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3