Author:
Tang Shuangxi,Li Shayu,Ma Liran,Tian Yu
Abstract
AbstractFluid viscosity is ubiquitous property and is of practical importance in intelligent fluids, industrial lubrication, and pipeline fluid transportation. Recently, there has been a surging interest in viscosity regulation. Here, we have developed a group of photorheological fluids by utilizing azobenzene polymers with a light-induced microstructure transformation. In this work, a photosensitive polymer with 4,4′-bis-hydroxyazobenzene as the main chain was designed and synthesized as a pivotal functional material. The sufficiently large structural difference under ultraviolet and near-infrared light makes it possible to regulate the viscosity of a polyethylene glycol solution. The viscosity of the photosensitive rheological fluids under ultraviolet light radiation is found to be up to 45.1% higher than that under near-infrared light radiation. To explore this intelligent lubricating technology, the friction regulation of ceramic sliding bearings was investigated utilizing photosensitive rheological fluids. Reversible friction regulation with a ratio of up to 3.77 has been achieved by the alternative irradiation of near-infrared and ultraviolet light, which can be attributed to the differences in mechanical properties and molecular structures under ultraviolet and near-infrared light according to both simulations and experiments. Such photorheological fluids will have promising applications in controllable lubrication, intelligent rheological fluids, and photosensitive dampers.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献