Structural health monitoring of bridges: a model-free ANN-based approach to damage detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,Civil and Structural Engineering
Link
http://link.springer.com/article/10.1007/s13349-017-0252-5/fulltext.html
Reference29 articles.
1. Huang Y, Ludwig SA, Deng F (2016) Sensor optimization using a genetic algorithm for structural health monitoring in harsh environments. J Civ Struct Health Monit 6(3):509–519
2. Li J, Zhang X, Xing J, Wang P, Yang Q, He C (2015) Optimal sensor placement for long-span cable-stayed bridge using a novel particle swarm optimization algorithm. J Civ Struct Health Monit 5(5):677–685
3. Yi T-H, Li H-N, Wang C-W (2016) Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm. Struct Control Health Monit 23(4):719–734
4. Jin C, Jang S, Sun X, Li J, Christenson R (2016) Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network. J Civ Struct Health Monit 6(3):545–560
5. Farrar CR, Worden K (2013) Structural health monitoring. A machine learning perspective. Wiley, Hoboken
Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Anomaly detection of massive bridge monitoring data through multiple transfer learning with adaptively setting hyperparameters;Engineering Structures;2024-09
2. Structural Damage Detection through Dual-Channel Pseudo-Supervised Learning;Applied Sciences;2024-08-21
3. ANN-Based Bridge Support Fixity Quantification Using Thermal Response Data from Real-Time Wireless Sensing;Sensors;2024-08-19
4. Data-Driven Performance Evaluation of A Concrete Slab Bridge Using Machine Learning;International Journal of Civil Engineering;2024-08-07
5. Investigation of Issues in Data Anomaly Detection Using Deep-Learning- and Rule-Based Classifications for Long-Term Vibration Measurements;Applied Sciences;2024-06-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3