DInSAR–SBAS satellite monitoring of infrastructures: how temperature affects the “Ponte della Musica” case study

Author:

Ponzo Felice Carlo,Auletta Gianluca,Ielpo Paolo,Ditommaso RoccoORCID

Abstract

AbstractContinuous monitoring of the structural health of strategic structures and transport infrastructures plays a crucial role in providing an effective assessment of the safety conditions and in timely planning of the ordinary and extraordinary maintenance programme. Deformation monitoring and dynamic characteristic identification are some commonly used strategies for this purpose. One of the main challenges of recent years in the field of structural health monitoring is the use of data deriving from satellite interferometry, capable of providing information on structural deformations at a local and territorial scale. Despite the solidity and dependability of satellite-based methods for assessing ground deformation over time, when it comes to structural surveillance, there are certain circumstances under which satellites are incapable of accurately assessing displacements. This is particularly true for structures that are sensitive to temperature variations. The paper uses the “Ponte della Musica–Armando Trovajoli” in Rome as a case study to explore these aspects in more depth. This bridge has a steel arch structure with a prestressed concrete deck below it. It represents an example in which satellite differential interferometry does not allow obtaining useful information on displacement, at least for the most deformable portion of the deck, and therefore also on any pathological movements. This work proposes a 3D digital twin of the bridge, appropriately calibrated through experimental measurements of the environmental vibrations performed on the bridge. This will allow to evaluate the role played by thermal deformations related to air temperature variations and thus better understand the connection between physiological deformations and satellite limits.

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3