Besov Spaces Induced by Doubling Weights

Author:

Reijonen Atte

Abstract

AbstractLet $$1\leqslant p<\infty $$ 1 p < , $$0<q<\infty $$ 0 < q < , and $$\nu $$ ν be a two-sided doubling weight satisfying $$\begin{aligned} \sup _{0\leqslant r<1}\frac{(1-r)^q}{\int _r^1\nu (t)\,dt}\int _0^r\frac{\nu (s)}{(1-s)^q}\,ds<\infty . \end{aligned}$$ sup 0 r < 1 ( 1 - r ) q r 1 ν ( t ) d t 0 r ν ( s ) ( 1 - s ) q d s < . The weighted Besov space $$\mathcal {B}_{\nu }^{p,q}$$ B ν p , q consists of those $$f\in H^p$$ f H p such that $$\begin{aligned} \int _0^1 \left( \int _{0}^{2\pi } |f'(re^{i\theta })|^p\,d\theta \right) ^{q/p}\nu (r)\,dr<\infty . \end{aligned}$$ 0 1 0 2 π | f ( r e i θ ) | p d θ q / p ν ( r ) d r < . Our main result gives a characterization for $$f\in \mathcal {B}_{\nu }^{p,q}$$ f B ν p , q depending only on |f|, p, q, and $$\nu $$ ν . As a consequence of the main result and inner-outer factorization, we obtain several interesting by-products. For instance, we show the following modification of a classical factorization by F. and R. Nevanlinna: If $$f\in \mathcal {B}_{\nu }^{p,q}$$ f B ν p , q , then there exist $$f_1,f_2\in \mathcal {B}_{\nu }^{p,q} \cap H^\infty $$ f 1 , f 2 B ν p , q H such that $$f=f_1/f_2$$ f = f 1 / f 2 . Moreover, we give a sufficient and necessary condition guaranteeing that the product of $$f\in H^p$$ f H p and an inner function belongs to $$\mathcal {B}_{\nu }^{p,q}$$ B ν p , q . Applying this result, we make some observations on zero sets of $$\mathcal {B}_{\nu }^{p,p}$$ B ν p , p .

Funder

University of Eastern Finland (UEF) including Kuopio University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Mathematics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametrization of the p-Weil–Petersson Curves: Holomorphic Dependence;The Journal of Geometric Analysis;2023-07-01

2. The $p$-integrable Teichmüller space for $p \geqslant 1$;Proceedings of the Japan Academy, Series A, Mathematical Sciences;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3