Abstract
AbstractLet $$1\leqslant p<\infty $$
1
⩽
p
<
∞
, $$0<q<\infty $$
0
<
q
<
∞
, and $$\nu $$
ν
be a two-sided doubling weight satisfying $$\begin{aligned} \sup _{0\leqslant r<1}\frac{(1-r)^q}{\int _r^1\nu (t)\,dt}\int _0^r\frac{\nu (s)}{(1-s)^q}\,ds<\infty . \end{aligned}$$
sup
0
⩽
r
<
1
(
1
-
r
)
q
∫
r
1
ν
(
t
)
d
t
∫
0
r
ν
(
s
)
(
1
-
s
)
q
d
s
<
∞
.
The weighted Besov space $$\mathcal {B}_{\nu }^{p,q}$$
B
ν
p
,
q
consists of those $$f\in H^p$$
f
∈
H
p
such that $$\begin{aligned} \int _0^1 \left( \int _{0}^{2\pi } |f'(re^{i\theta })|^p\,d\theta \right) ^{q/p}\nu (r)\,dr<\infty . \end{aligned}$$
∫
0
1
∫
0
2
π
|
f
′
(
r
e
i
θ
)
|
p
d
θ
q
/
p
ν
(
r
)
d
r
<
∞
.
Our main result gives a characterization for $$f\in \mathcal {B}_{\nu }^{p,q}$$
f
∈
B
ν
p
,
q
depending only on |f|, p, q, and $$\nu $$
ν
. As a consequence of the main result and inner-outer factorization, we obtain several interesting by-products. For instance, we show the following modification of a classical factorization by F. and R. Nevanlinna: If $$f\in \mathcal {B}_{\nu }^{p,q}$$
f
∈
B
ν
p
,
q
, then there exist $$f_1,f_2\in \mathcal {B}_{\nu }^{p,q} \cap H^\infty $$
f
1
,
f
2
∈
B
ν
p
,
q
∩
H
∞
such that $$f=f_1/f_2$$
f
=
f
1
/
f
2
. Moreover, we give a sufficient and necessary condition guaranteeing that the product of $$f\in H^p$$
f
∈
H
p
and an inner function belongs to $$\mathcal {B}_{\nu }^{p,q}$$
B
ν
p
,
q
. Applying this result, we make some observations on zero sets of $$\mathcal {B}_{\nu }^{p,p}$$
B
ν
p
,
p
.
Funder
University of Eastern Finland (UEF) including Kuopio University Hospital
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parametrization of the p-Weil–Petersson Curves: Holomorphic Dependence;The Journal of Geometric Analysis;2023-07-01
2. The $p$-integrable Teichmüller space for $p \geqslant 1$;Proceedings of the Japan Academy, Series A, Mathematical Sciences;2023-06-19