Minimal Soft Lattice Theta Functions

Author:

Bétermin LaurentORCID

Abstract

AbstractWe study the minimality properties of a new type of “soft” theta functions. For a lattice $$L\subset {\mathbb {R}}^d$$ L R d , an L-periodic distribution of mass $$\mu _L$$ μ L , and another mass $$\nu _z$$ ν z centered at $$z\in {\mathbb {R}}^d$$ z R d , we define, for all scaling parameters $$\alpha >0$$ α > 0 , the translated lattice theta function $$\theta _{\mu _L+\nu _z}(\alpha )$$ θ μ L + ν z ( α ) as the Gaussian interaction energy between $$\nu _z$$ ν z and $$\mu _L$$ μ L . We show that any strict local or global minimality result that is true in the point case $$\mu =\nu =\delta _0$$ μ = ν = δ 0 also holds for $$L\mapsto \theta _{\mu _L+\nu _0}(\alpha )$$ L θ μ L + ν 0 ( α ) and $$z\mapsto \theta _{\mu _L+\nu _z}(\alpha )$$ z θ μ L + ν z ( α ) when the measures are radially symmetric with respect to the points of $$L\cup \{z\}$$ L { z } and sufficiently rescaled around them (i.e., at a low scale). The minimality at all scales is also proved when the radially symmetric measures are generated by a completely monotone kernel. The method is based on a generalized Jacobi transformation formula, some standard integral representations for lattice energies, and an approximation argument. Furthermore, for the honeycomb lattice $${\mathsf {H}}$$ H , the center of any primitive honeycomb is shown to minimize $$z\mapsto \theta _{\mu _{{\mathsf {H}}}+\nu _z}(\alpha )$$ z θ μ H + ν z ( α ) , and many applications are stated for other particular physically relevant lattices including the triangular, square, cubic, orthorhombic, body-centered-cubic, and face-centered-cubic lattices.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Mathematics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3