Effect of Periodic Arrays of Defects on Lattice Energy Minimizers

Author:

Bétermin LaurentORCID

Abstract

AbstractWe consider interaction energies $$E_f[L]$$ E f [ L ] between a point $$O\in {\mathbb {R}}^d$$ O R d , $$d\ge 2$$ d 2 , and a lattice L containing O, where the interaction potential f is assumed to be radially symmetric and decaying sufficiently fast at infinity. We investigate the conservation of optimality results for $$E_f$$ E f when integer sublattices kL are removed (periodic arrays of vacancies) or substituted (periodic arrays of substitutional defects). We consider separately the non-shifted ($$O\in k L$$ O k L ) and shifted ($$O\not \in k L$$ O k L ) cases and we derive several general conditions ensuring the (non-)optimality of a universal optimizer among lattices for the new energy including defects. Furthermore, in the case of inverse power laws and Lennard-Jones-type potentials, we give necessary and sufficient conditions on non-shifted periodic vacancies or substitutional defects for the conservation of minimality results at fixed density. Different examples of applications are presented, including optimality results for the Kagome lattice and energy comparisons of certain ionic-like structures.

Funder

WWTF

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On lattice hexagonal crystallization for non-monotone potentials;Journal of Mathematical Physics;2024-07-01

2. Structural transitions in interacting lattice systems;Analysis and Mathematical Physics;2024-03-15

3. Three‐dimensional lattice ground states for Riesz and Lennard‐Jones–type energies;Studies in Applied Mathematics;2022-09-08

4. Lattice ground states for embedded-atom models in 2D and 3D;Letters in Mathematical Physics;2021-08

5. On energy ground states among crystal lattice structures with prescribed bonds;Journal of Physics A: Mathematical and Theoretical;2021-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3