Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s10666-021-09789-z.pdf
Reference49 articles.
1. Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. https://doi.org/10.1002/wcc.81
2. Das, P., Naganna, S. R., Deka, P. C., & Pushparaj, J. (2020). Hybrid wavelet packet machine learning approaches for drought modeling. Environmental Earth Sciences, 79, 221. https://doi.org/10.1007/s12665-020-08971-y
3. Nagarajan, R. (2009). Resources, drought events and management profile of countries. In Drought Assessment (pp. 364–423). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-2500-5_9
4. Darand, M., & Sohrabi, M. M. (2018). Identifying drought- and flood-prone areas based on significant changes in daily precipitation over Iran. Natural Hazards, 90(3), 1427–1446. https://doi.org/10.1007/s11069-017-3107-9
5. Palmer, W. C. (1965). Meteorological drought. Research Paper No. 45, US Department of Commerce, US Weather Bureau, Washington D.C. 58 p.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Spatio-Temporal Analysis of the Frequency of Droughts in Mexico’s Forest Ecosystems;Forests;2024-07-17
2. A Way to Integrate ML Algorithm with the NN for the Purpose of Crop Production Through Continuous Monitoring;2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2024-05-14
3. Analysis of Spatiotemporal Variation Characteristics and Driving Factors of Drought in Yinshanbeilu Inner Mongolia Based on a Cloud Model;Water;2024-01-11
4. A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation;Ecological Modelling;2023-08
5. Drought Forecasting: Application of Ensemble and Advanced Machine Learning Approaches;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3