1. Li, X., Zhang, X., Zhang, Z., Han, L., Gong, D., Li, J., Wang, T., Wang, Y., Gao, S., Duan, H., & Kong, F. (2019). (D. J. Schroeder (1999). Astronomical optics (2nd ed.). Academic Press. p. 278. ISBN 978-0-12-629810-9., p.278). Air pollution exposure and immunological and systemic inflammatory alterations among schoolchildren in China. Science of The Total Environment, 657, 1304–1310. https://doi.org/10.1016/j.scitotenv.2018.12.153
2. Chen, Z., Cui, L., Cui, X., Li, X., Yu, K., Yue, K., Dai, Z., Zhou, J., Jia, G., & Zhang, J. (2019). The association between high ambient air pollution exposure and respiratory health of young children: a cross sectional study in Jinan, China. Science of the Total Environment, 656, 740–749. https://doi.org/10.1016/j.scitotenv.2018.11.368
3. Organization, W. H. (n.d.). Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization. https://apps.who.int/iris/handle/10665/250141
4. Coats C. J., Jr. (1996). High-performance algorithms in the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system. In Proceedings of Ninth AMS Joint Conference on Applications of Air Pollution Meteorology with A&WMA. American Meteor Society, GA (pp. 584-588). https://www.osti.gov/biblio/422986
5. Olatinwo, R. O., Prabha, T., Paz, J. O., Riley, D. G., & Hoogenboom, G. (2010). The weather research and forecasting (WRF) model: Application in prediction of TSWV-vectors populations. Journal of Applied Entomology, 135(1–2), 81–90. https://doi.org/10.1111/j.1439-0418.2010.01539.x