Statistical Modelling of Extreme Rainfall Indices using Multivariate Extreme Value Distributions
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s10666-021-09766-6.pdf
Reference37 articles.
1. Seneviratne, S.I., Nicholls, N., Goodess, S., Kanae, J., Kossin, Y., Luo, J., et al. (2012). Changes in climate extremes and their impacts on the natural physical environment. In: managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 109-230.
2. Jones, M. R., Blenkinsop, S., Fowler, H. J., & Kilsby, C. G. (2014). Objective classification of extreme rainfall regions for the UK and updated estimates of trends in regional extreme rainfall. International Journal of Climatology, 34(3), 751–765.
3. Lestari, S., King, A., Vincent, C., Karoly, D., & Protat, A. (2019). Seasonal dependence of rainfall extremes in and around Jakarta. Indonesia. Weather and Climate Extremes, 24, 100202.
4. Avila, A., Guerrero, F. C., Escobar, Y. C., & Justino, F. (2019) Recent Precipitation Trends and Floods in the Colombian Andes. Water, 11, 379.
5. Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., & Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth System Sciences, 10(3), 447–458.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks;Water Resources Management;2023-11-18
2. Statistical modeling and dependence analysis for tide level via multivariate extreme value distribution method;Ocean Engineering;2023-10
3. Research on Uncertainty of Landslide Susceptibility Prediction—Bibliometrics and Knowledge Graph Analysis;Remote Sensing;2022-08-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3