A Scheme for Jointly Trading off Costs and Risks of Solar Radiation Management and Mitigation Under Long-Tailed Climate Sensitivity Probability Density Distributions

Author:

Roshan ElnazORCID,Khabbazan Mohammad M.,Held Hermann

Abstract

AbstractSide effects of “solar-radiation management” (SRM) might be perceived as an important metric when society decides on implementing SRM as a climate policy option to alleviate anthropogenic global warming. We generalize cost-risk analysis that originally trades off expected welfare loss from climate policy costs and risks from transgressing climate targets to also include risks from applying SRM. In a first step of acknowledging SRM risks, we represent global precipitation mismatch as a prominent side effect of SRM under long-tailed probabilistic knowledge about climate sensitivity. We maximize a social welfare function for the following three scenarios, considering alternative relative weights of risks: temperature-risk-only, precipitation-risk-only, and equally-weighted both-risks. Our analysis shows that in the temperature-risk-only scenario, perfect compliance with the 2 °C-temperature target is attained for all numerically represented climate sensitivities, a unique feature of SRM, but the 2 °C-compatible precipitation corridor is violated. The precipitation-risk-only scenario exhibits an approximate mirror-image of this result. In addition, under the both-risks scenario, almost 90% and perfect compliance can be achieved for the temperature and precipitation targets, respectively. Moreover, in a mitigation-only analysis, the welfare loss from mitigation cost plus residual climate risks, compared to the no-climate-policy option, is approximately 4.3% (in terms of balanced growth equivalent), while being reduced more than 90% under a joint-mitigation-SRM analysis.

Funder

Deutsche Forschungsgemeinschaft

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3