Cost-Risk Analysis Reconsidered—Value of Information on the Climate Sensitivity in the Integrated Assessment Model PRICE

Author:

Khabbazan Mohammad M.ORCID

Abstract

Infeasible solutions or negative expected values of future climate information are undesired problems if climate policies are adopted under Cost-Effectiveness Analysis (CEA) to reach uncertain temperature targets. Cost-Risk Analysis (CRA) was developed to resolve these issues. It allows for a trade-off between expected welfare losses of mitigation and avoided risk of transgressing a climate target with a certain probability of compliance (Safety). Some of the significant contributions of this paper are: (i) It updates the Probabilistic Integrated model of Climate and the Economy (PRICE) as a probabilistic version of the latest version of the Dynamic Integrated Climate-Economy model (DICE) 2016, and it extends the model to run welfare-maximizing decision analytic frameworks readily. (ii) It highlights that the standard method of applying CRA (Old CRA) leads to an extra welfare cost. (iii) It proposes revised instruction on how to use CRA. (iv) It simulates and compares welfare-maximizing decision analytic frameworks on the level of risk, damages, and carbon prices. (v) It measures the value of information using risk-based methods and compares them with the value of information calculated using the damage-based method. (vi) It measures the carbon prices for the CRA scenarios for the first time. The results show that the choice of the disutility function governs the magnitude of the value of information. Using a damage function or Old CRA, the value of information is significantly high for new information arriving between 2020 and 2060. If the New CRA is applied, however, such benefits are negligible.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Integrated Assessment Models (IAMs) and Energy Environment Economy e3 Models https://unfccc.int/topics/mitigation/workstreams/response-measures/integrated-assessment-models-iams-and-energy-environment-economy-e3-models#eq-20

2. WITCH - A World Induced Technical Change Hybrid Model

3. Chapter 2—Integrated risk and uncertainty assessment of climate change response policies;Kunreuther,2014

4. Operationalizing climate targets under learning: An application of cost-risk analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3