Modeling the effects of capillary pressure with the presence of full tensor permeability and discrete fracture models using the mimetic finite difference method

Author:

Abd Abdul Salam,Zhang Na,Abushaikha Ahmad S.ORCID

Abstract

AbstractCapillary dominated flow or imbibition—whether spontaneous or forced—is an important physical phenomena in understanding the behavior of naturally fractured water-driven reservoirs (NFR’s). When the water flows through the fractures, it imbibes into the matrix and pushes the oil out of the pores due to the difference in the capillary pressure. In this paper, we focus on modeling and quantifying the oil recovered from NFR’s through the imbibition processes using a novel fully implicit mimetic finite difference (MFD) approach coupled with discrete fracture/discrete matrix (DFDM) technique. The investigation is carried out in the light of different wetting states of the porous media (i.e., varying capillary pressure curves) and a full tensor representation of the permeability. The produced results proved the MFD to be robust in preserving the physics of the problem, and accurately mapping the flow path in the investigated domains. The wetting state of the rock affects greatly the oil recovery factors along with the orientation of the fractures and the principal direction of the permeability tensor. We can conclude that our novel MFD method can handle the fluid flow problems in discrete-fractured reservoirs. Future works will be focused on the extension of MFD method to more complex multi-physics simulations.

Funder

Qatar National Research Fund

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3