Analytical Solutions for a 1D Scale Inhibitor Transport Model with Coupled Adsorption and Precipitation

Author:

Stamatiou A.ORCID,Sorbie K. S.

Abstract

AbstractIn a previous publication (Sorbie and Stamatiou in Transp Porous Media 123:271–287, 2018), we presented a one-dimensional analytical solution for scale inhibitor transport and retention in a porous medium through a kinetic precipitation mechanism. In this process, a chemical complex of the scale inhibitor precipitates within the porous matrix and it then re-dissolves through a kinetic solubilisation process. Considering the re-dissolution of this precipitate in a one-dimensional linear system such as a reservoir layer or indeed in a laboratory core/pack flood, the flowing aqueous phase gradually dissolves the precipitate which is then eluted from the system. The most novel aspect of this previous analytical solution arose from the fact that, at a certain point in time (or pore volume throughput), the precipitate in the system was locally fully re-dissolved, forming an internal moving boundary between where no precipitate remained (closer to the system inlet) and where a precipitate was present (further into the system up to the outlet). In the current paper, we extend this work by presenting analytical solutions for the case where precipitation/dissolution occurs simultaneously with an adsorption/desorption interaction between the scale inhibitor and the rock surface, described by the nonlinear Langmuir isotherm. When examining this more complex problem in the flow scenario where the local precipitate is completely dissolved, several interesting analytical solution structures are obtained as a result of the internal moving boundary. Which of these structures occurs is rigorously categorised according to the solubility, the initial levels of precipitate and adsorbate, as well as the shape of the Langmuir isotherm. After the mathematical development of the analytical solutions, they are applied to some example problems which are compared with numerical solutions. Finally, a number of different generic features in the scale inhibitor effluent concentration profile are predicted and discussed with regard to practical field applications.

Funder

Clariant

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Reference27 articles.

1. Akanji, L., Falade, G.: Closed-form solution of radial transport of tracers in porous media influenced by linear drift. Energies 12(1), 29 (2019)

2. Alinhac, S.: Hyperbolic Partial Differential Equations. Springer, Berlin (2009)

3. Amjad, Z., Demadis, K.: Mineral Scales and Deposits: Scientific and Technological Approaches. Elsevier, Amsterdam (2015)

4. Holden, H., Risebro, N.: Front Tracking for Hyperbolic Conservation Laws. Springer, Berlin (2002)

5. Kahrwad, M., Sorbie, K.S., Boak, L.S.: Coupled adsorption/precipitation of scale inhibitors: experimental results and modeling. Soc. Pet. Eng. 24, 481–491 (2009)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3