A Coupled Model of Phosphonate Scale Inhibitor Interactions with Carbonate Formations

Author:

Kalantari Meybodi Mahdi1,Sorbie Ken S.1,Vazquez Oscar1,Jarrahian Khosro1,Mackay Eric J.1

Affiliation:

1. Heriot Watt University

Abstract

Abstract In this study, a chemical model has been developed for the simulation of the scale inhibitor (SI) interactions with carbonate systems (calcite), where the aqueous phase may contain free calcium and magnesium ions. The resulting model couples together the equations of (i) the carbonate system, (ii) the speciation of the SI, modelled as a weak polyacid, HnA, (iii) the metal (Ca2+, Mg2+) binding – SI chelant interactions and (iv) the subsequent precipitation of SI-Ca-Mg complex. These reactions are considered in conjunction with the charge balance and mass balances for calcium, magnesium, scale inhibitor and "carbon" (i.e. the carbonate system aqeous components HCO3-, CO32- and CO2 and solid CaCO3). This full equation set, with suitable reduction, results in a system of 3 non-linear equations which can be solved by the Newton-Raphson method to find the final equilibrium state of the system. The experimental results for the DETPMP/Calcite/Ca-Mg brine system from a previous study were used to check the reliability of the proposed model. The model calculates the equilibrium concentrations of all species (SI, Ca2+, Mg2+, HCO3-, CO32-, CO2, H+, and the components of the SI-Ca-Mg complexes etc.) based on their initial values and reaction constants, i.e. equilibrium constants, stability constants and solubility constants. The model can be applied either assuming a closed chemical system, or an open system and simuilation conditions were chosen in order to match the actual experiments which were matched. The model results show good quantitative agreement with the experimental results, although some assumptions must be made on the system input constants. To elucidate the precise effects that these various parameters are having in this very complex coupled system, an extensive sensitivity analysis was performed. This is especially important for uncertain parameters like stability constants of the complexes of scale inhibitor with calcium and magnesium, which are not reported in the literature. In future, this model be coupled with the adsorption model (based on the isothermal adsorption curve) and the coupled model will be incorporated into a transport model to develop a complete coupled adsorption/precipitation squeeze treatments simulation model. To our knowledge, no such model currently exists.

Publisher

SPE

Reference33 articles.

1. Scale Inhibitor Core Floods in Carbonate Cores: Chemical Interactions and Modelling;Baraka-Lokmane;SPE Eighth International Symposium on Oilfield Scale 2006,2006

2. Dong Yuan, M., Sorbie, K., Todd, A., & Atkinson, L. (1993). The Modelling of Adsorption and Precipitation Scale Inhibitor Squeeze Treatments in North Sea Fields SPE Members. doi: 10.2118/25163-MS

3. Coupled Adsorption/Precipitation Experiments: 1. Static Results;Ibrahim,2012

4. Coupled Adsorption/Precipitation Experiments: 2. Non-Equilibrium Sand Pack Treatments;Ibrahim,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3