Membrane Filtration Enhanced Hydrometallurgical Recovery Process of Indium from Waste LCD Panels

Author:

Lahti Jussi,Vazquez Sergio,Virolainen SamiORCID,Mänttäri Mika,Kallioinen Mari

Abstract

Abstract Insufficient recycling of a continuously increasing amount of liquid crystal display (LCD) waste leads to the waste of potentially recyclable materials, especially rare and critical indium. Moreover, landfilling of LCD waste increases the potential for environmental risk. This paper describes a recycling process combining membrane filtration unit processes to hydrometallurgical indium recovery process. The LCD panels were crushed and leached with 1 M H2SO4. 97.4% yields on average were obtained, and a novel finding was made about fast kinetics (2 min for the maximum indium yield). Ultrafiltration was used to remove the dissolved organic material from the leachate, which was concentrated with nanofiltration before liquid–liquid extraction for indium purification. The results showed that commercial polymeric membranes removed more than 90% (from over 3000 mg/L to under 200 mg/L) of the dissolved organic compounds, thus potentially significantly diminishing the detriments caused by these compounds in the liquid–liquid extraction step. The concentration of the leachate with nanofiltration enables the use of smaller processing equipment and to save chemicals in the further steps of the process. The indium content in the leachate was more than five times higher after nanofiltration than after leaching (126 mg/L vs. 677 mg/L). In liquid–liquid extraction, the phase separation took place in only 34 s with the membrane-treated leachate, while with the untreated leachate it remained incomplete even after three hours. The purity of indium was increased from 10 to 74%. From the obtained HCl solution, a 95.5% pure indium product with 69.3% yield was obtained by cementation. Graphical Abstract

Funder

LUT University

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3