Abstract
AbstractIn this paper we establish a local higher integrability result for the spatial gradient of weak solutions to doubly nonlinear parabolic systems. The proof is based on a new intrinsic scaling that involves both the solution and its spatial gradient. It allows to compensate for the different scaling of the system in |u| and |Du|. The result covers the range of parameters $$p>\frac{2n}{n+2}$$
p
>
2
n
n
+
2
and $$0<q\le 1$$
0
<
q
≤
1
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis
Reference28 articles.
1. Alonso, R., Santillana, M., Dawson, C.: On the diffusive wave approximation of the shallow water equations. Euro. J. Appl. Math. 19(5), 575–606 (2008)
2. Bamberger, A., Sorine, M., Yvon, J.P.: Analyse et contrôle d’un réseau de transport de gaz. (French) Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), II, pp. 347–359, Lecture Notes in Phys., 91, Springer, Berlin-New York, 1979
3. Bögelein, V.: Higher integrability for weak solutions of higher order degenerate parabolic systems. Ann. Acad. Sci. Fenn. Math. 33(2), 387–412 (2008)
4. Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with non-standard growth and degenerate diffusions. Publ. Mat. 55(1), 201–250 (2011)
5. Bögelein, V., Duzaar, F., Kinnunen, J., Scheven, C.: Higher integrability for doubly nonlinear parabolic systems. J. Math. Pures Appl. (9) 143 (2020), 31–72
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献