Abstract
AbstractWe prove a local higher integrability result for the spatial gradient of weak solutions to doubly nonlinear parabolic systems whose prototype is $$\begin{aligned} \partial _t \left( |u|^{q-1}u \right) -{{\,\textrm{div}\,}}\left( |Du|^{p-2} Du \right) = {{\,\textrm{div}\,}}\left( |F|^{p-2} F \right) \quad \text { in } \Omega _T:= \Omega \times (0,T) \end{aligned}$$
∂
t
|
u
|
q
-
1
u
-
div
|
D
u
|
p
-
2
D
u
=
div
|
F
|
p
-
2
F
in
Ω
T
:
=
Ω
×
(
0
,
T
)
with parameters $$p>1$$
p
>
1
and $$q>0$$
q
>
0
and $$\Omega \subset {\mathbb {R}}^n$$
Ω
⊂
R
n
. In this paper, we are concerned with the ranges $$q>1$$
q
>
1
and $$p>\frac{n(q+1)}{n+q+1}$$
p
>
n
(
q
+
1
)
n
+
q
+
1
. A key ingredient in the proof is an intrinsic geometry that takes both the solution u and its spatial gradient Du into account.
Funder
Magnus Ehrnroothin Säätiö
Austrian Science Fund
Universität Duisburg-Essen
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Alonso, R., Santillana, M., Dawson, C.: On the diffusive wave approximation of the shallow water equation. Euro. J. Appl. Math. 19(5), 575–606 (2008)
2. Bamberger, A., Sorine, M., Yvon, J.P.: Analyse et contrôle d’un réseau de transport de gaz. (French). In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences and Engineering, II. Lecture Notes in Physics, vol. 91. Springer, Berlin, Heidelberg (1977)
3. Bögelein, V.: Higher integrability for weak solutions of higher order degenerate parabolic systems. Ann. Acad. Sci. Fenn. Math. 33(2), 387–412 (2008)
4. Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with non-standard growth and degenerate diffusions. Publ. Mat. 55(1), 201–250 (2011)
5. Bögelein, V., Duzaar, F., Kinnunen, J., Scheven, C.: Higher integrability for doubly nonlinear parabolic systems. J. Math. Pures Appl. 143, 31–72 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献